椭圆及其标准方程

本文由用户“do11223”分享发布 更新时间:2022-01-12 07:42:27 举报文档

以下为《椭圆及其标准方程》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

椭圆及其标准方程

一、尝试探究,形成概念:思考 1: 在纸版上做图说明什么?

思考 2: 在做图中,有那些物体的位置没变?有那些量没变?

思考 3: 若调整两图钉的相对位置所得到的图形有何变化?定义:二、复习回顾:请同学思考求曲线方程的一般步骤:

(1) 建系; “对称美” , “简洁美”

(2) 设点;

(3) 列式;

(4) 化简;***

(5) 证明。

建立平面直角坐标系通常遵循的原则:“对称”、“简洁”方案一三、标准方程的推导:(1)建系:(4)化简:焦点在x轴:焦点在y轴: 图 形方 程焦 点F(±c,0)F(0,±c)a,b,c之间的关系c2=a2-b2定 义两类标准方程的对照表注:共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.练习:1 椭圆     上一点P到一个焦点的距离为5,

则P到另一个焦点的距离为( )

A.5 B.6 C.4 D.102.椭圆     的焦点坐标是( )

A.(±5,0)      B.(0,±5)

C.(0,±12)?       D.(±12,0)

.z..xx.kCA    五、例题讲解:练习:根据下列条件,求椭圆的标准方程:思考与探究: z.x.x.k 六、课堂小结:1 、椭圆的定义及焦点,焦距的概念;2、椭圆 的标准方程:(1)当焦点在X轴上时, (2)当焦点在Y轴上时,七、课后作业:[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]

以上为《椭圆及其标准方程》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览