以下为《椭圆及其标准方程教案》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
椭圆及其标准方程
一、教学目标
(一)知识目标
1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导;
2、掌握焦点、焦点位置与方程关系、焦距;
(二)能力目标
通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力;
(三)学科渗透目标
通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力
二、教材分析
1.重点:椭圆的定义和椭圆的标准方程.
(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)
2.难点:椭圆的标准方程的推导.
(解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.)
3.疑点:椭圆的定义中常数加以限制的原因.
(解决办法:分三种情况说明动点的轨迹.)
三、教学过程
(一)创设情境,引入概念
1、动画演示,描绘出椭圆轨迹图形。
2、实验演示。
思考:椭圆是满足什么条件的点的轨迹呢?
(二)实验探究,形成概念
1、动手实验:学生分组动手画出椭圆。
实验探究:
保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?
思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?
概括椭圆定义
引导学生概括椭圆定义
椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为的椭圆上任一点M,有什么性质?
令椭圆上任一点M,则有
(三)研讨探究,推导方程
1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?
2、研讨探究
问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有
,尝试推导椭圆的方程。
思考:如何建立坐标系,使求出的方程更为简单?
将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。
方案一 方案二
按方案一建立坐标系,师生研讨探究得到椭圆标准方程
+=1(),其中b2 = a2-c2 ( b > 0 );
选定方案二建立坐标系,由学生完成方程化简过程,可得出+=1,同样也有a2-c2 = b2 ( b > 0 )。
教师指出:我们所得的两个方程+=1和+=1()都是椭圆的标准方程。
(四)归纳概括,方程特征
观察椭圆图形及其标准方程,师生共同总结归纳
(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;
(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;
(3)椭圆标准方程中三个参数a,b,c关系:;
(4)椭圆焦点的位置由标准方程中分母的大小确定;
(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。
在归纳总结的基础上,填下表
标准方程
+=1
+=1
图形
a,b,c关系
焦点坐标
焦点位置
在x轴上
在y轴上
(五)例题研讨,变式精析
例1:指出下列方程中,哪些是椭圆的方程?若是椭圆的方程,判定椭圆的焦点在哪个轴上,求出a,b,c 以及焦点坐标.
例2:已知椭圆的焦点在X轴,中心在原点,焦距为6,椭圆上的点到两焦点的距离和为10,求这个椭圆的标准方程。
(六)小结归纳,提高认识
1. 椭圆的定义(注意定义中的三个条件)
2. 椭圆的标准方程(注意焦点的位置与方程形式的关系)
3. 解析几何的基本思想
(七)作业训练,巩固提高
(八)教学反思
本节借助几何画板的演示功能,使学生通过点的运动,观察到椭圆的轨迹的特征。多媒体创设问题的情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让学生在参与中学会学习、学会合作、学会创新.
学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这与缺乏必要的数学思想和方法密切相关.本节课从实例出发,用多媒体结合本课题设计了一对动点有规律的运动作一些理性的探索和研究.
在教材处理上,大胆创新,根据椭圆定义的特点,结合学生的认识能力和思维习惯在概念的理解上,先突出“和”,在此基础上再完善“常数”取值范围.在标准方程的推导上,并不是直接给出教材中的“建系”方式,而是让学生自主地“建系”,通过所得方程的比较,得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美.
在对教材中“令”的处理并不是生硬地过渡,而是通过课件让学生观察在当为椭圆短轴端点时(但这一几何性质并不向学生交待),特征三角形所体现出来的几何关系,再做变换.
[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]
以上为《椭圆及其标准方程教案》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。