对数函数及其性质教学设计

本文由用户“syb393771447”分享发布 更新时间:2022-01-06 11:06:27 举报文档

以下为《对数函数及其性质教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

教学设计

2.2.2 对数函数及其性质



教学分析

有了指数函数的图象和性质的学习经历,以及对数知识的知识准备,对数函数概念的引入、对数函数图象和性质的研究便水到渠成.

对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自实践,又便于学生接受.在教学中,学生往往容易忽略对数函数的定义域,因此,在进行定义教学时,要结合指数式强调说明对数函数的定义域,加强对对数函数定义域为(0,+∞)的理解.在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数a的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个难点,教学时要充分利用图象,数形结合,帮助学生理解.

为了便于学生理解对数函数的性质,教学时可以先让学生在同一坐标系内画出函数y=log2x和的图象,通过两个具体的例子,引导学生共同分析它们的性质.有条件的学校也可以利用《几何画板》软件,定义变量a,作出函数y=logax的图象,通过改变a的值,在动态变化的过程中让学生认识对数函数的图象和性质.

研究了对数函数的图象和性质之后,可以将对数函数的图象和性质与指数函数的图象和性质进行比较,以便加深学生对对数函数的概念、图象和性质的理解,同时也可以为反函数的概念的引出做一些准备.

三维目标

1.理解对数函数的概念,掌握对数函数的性质,了解对数函数在生产实践中的简单应用,培养学生的数学交流能力和与人合作的精神,用联系的观点分析问题,通过对对数函数的学习,渗透数形结合、分类讨论等数学思想.

2.能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质,使学生用联系的观点分析、解决问题.认识事物之间的相互转化,通过师生双边活动使学生掌握比较同底对数大小的方法,培养学生的数学应用的意识.

3.掌握对数函数的单调性及其判定,会进行同底数的对数和不同底数的对数的大小比较,加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.

重点难点

重点:对数函数的定义、图象和性质;对数函数性质的初步应用,利用对数函数单调性比较同底对数大小,对数函数的特性以及函数的通性在解决有关问题中的灵活应用.

难点:底数a对对数函数性质的影响,不同底数的对数比较大小,单调性和奇偶性的判断和证明.

课时安排

3课时



第1课时

导入新课

思路1.如课本2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系都有唯一确定的年代t与它对应,所以t是P的函数.同理,对于每一个对数式y=logax中的x,任取一个正的实数值,y均有唯一的值与之对应,所以y是关于x的函数.这就是本节课的主要内容,教师点出课题:对数函数及其性质(1).

思路2.我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y是分裂次数x的函数,这个函数可以用指数函数y=2x表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万某某,10万某某,XXXXXXXXXX细胞,那么,分裂次数x就是细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x=log2y.如果用x表示自变量,y表示函数,这个函数就是y=log2x.这一节,我们来研究与指数函数密切相关的函数——对数函数.教师点出课题:对数函数及其性质(1).

推进新课



提出问题

(1)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢x表示的漂洗次数y的关系式,请根据关系式计算若要使存留的污垢,不超过原有的,则至少要漂洗几次?

(2)你是否能根据上面的函数关系式,给出一个一般性的概念?

(3)为什么对数函数的概念中明确规定a>0,a≠1?

(4)你能求出对数函数的定义域、值域吗?

(5)如何根据对数函数的定义判断一个函数是否是一个对数函数?请你说出它的步骤.

活动:先让学生仔细审题,交流讨论,然后回答,教师提示引导,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己应用知识的能力,教师巡视,个别辅导,评价学生的结论.

讨论结果:(1)若每次能洗去污垢的,则每次剩余污垢的,漂洗1次存留污垢x=,漂洗2次存留污垢x=2,XXXXX,漂洗y次后存留污垢x=y,因此y用x表示的关系式是对上式两边取对数得,当x=时,y=3,因此至少要漂洗3次.

(2)对于式子,如果用字母a替代,这就是一般性的结论,即对数函数的定义:

函数y=logax(a>0且a≠1)叫做对数函数,对数函数y=logax(a>0且a≠1)的定义域为(0,+∞),值域为(-∞,+∞).

(3)根据对数式与指数式的关系,知y=logax可化为ay=x,由指数的概念,要使ay=x有意义,必须规定a>0且a≠1.

(4)因为y=logax可化为x=ay,不管y取什么值,由指数函数的性质ay>0,所以x∈(0,+∞),对数函数的值域为(-∞,+∞).

(5)只有形如y=logax(a>0且a≠1,x>0)的函数才叫做对数函数,

即对数符号前面的系数为1,底数是不为1的正常数,真数是x的形式,否则就不是对数函数.像y=loga(x+1),y=2logax,y=logax+1等函数,它们是由对数函数变化而得到的,都不是对数函数.

提出问题

(1)前面我们学习指数函数的时候,根据什么思路研究指数函数的性质,对数函数呢?

(2)前面我们学习指数函数的时候,如何作指数函数的图象?说明它的步骤.

(3)利用上面的步骤,作下列函数的图象:y=log2x,.

(4)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?

(5)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?

(6)把y=log2x和的图象,放在同一坐标系中,你能发现这两个图象的关系吗?

(7)你能证明上述结论吗?

(8)能否利用y=log2x的图象画出的图象?请说明画法的理由.

活动:教师引导学生回顾需要研究的函数有哪些性质,共同讨论研究对数函数的性质的方法,强调数形结合,函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画的好的部分学生的图象,同时投影展示课本表2-3,及图2.2-1,2.2-2及2.2-3,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究对数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对对数函数性质的认识,推荐代表发表本组的集体认识.

讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质.

(2)一般是列表、描点、连线,借助多媒体手段画出图象,用计算机作函数的图象.

(3)列表(学生自己完成):

x

0.25

0.5

1

2

4

8

16

32

XXXXX



y=log2x

-2

-1

0[来源:Z&xx&k.Com]

1

2

3

4

5

XXXXX





2

1

0

-1

-2

-3

-4

-5

XXXXX



作图1、图2:



图1



图2

(4)通过观察图1,可知y=log2x的图象分布在y轴右边,说明定义域是正实数.图象上下延伸,无止境,说明值域是全体实数.图象自左某某是上升的,说明是增函数,图象经过点(1,0),当x>1时y>0,当0<x<1时y<0,图象不关于x轴对称,也不关于y轴对称.定义域不关于原点对称,说明函数既不是奇函数也不是偶函数.

通过观察图2,可知的图象分布在y轴右边,说明定义域是正实数.图象上下延伸,无止境,说明值域是全体实数.图象自左至右是下降的,说明是减函数,图象经过点(1,0),当x>1时y<0,当0<x<1时y>0,图象不关于x轴对称,也不关于y轴对称.定义域不关于原点对称,说明函数既不是奇函数也不是偶函数.

可以再画下列函数的图象:y=log6x,,以作比较,重新观察函数图象的特点,推广到一般的情形.

(5)通过以上观察我们得到对数函数图象的特点进而得出函数的性质.

图象的特征

函数的性质



(1)图象都在y轴的右边

(1)定义域是(0,+∞)



(2)函数图象都经过(1,0)点

(2)1的对数是0



(3)从左往右看,当a>1时,图象逐渐上升,当0<a<1时,图象逐渐下降

(3)当a>1时,y=logax是增函数,当0<a<1时,y=logax是减函数



(4)当a>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0;当0<a<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0

(4)当a>1时,

x>1,则logax>0,

0<x<1,则logax<0;

当0<a<1时,

x>1,则logax<0,

0<x<1,则logax>0



由上述表格可知,对数函数的性质如下:

a>1

0<a<1



图







性

质[来源:学+科+网][来源:***ZXXK]

定义域:(0,+∞)[来源:***]





值域:R





过点(1,0),即当x=1时,y=0





x∈(0,1)时,y<0;

x∈(1,+∞)时,y>0

x∈(0,1)时,y>0;

x∈(1,+∞)时,y<0





在(0,+∞)上是增函数

在(0,+∞)上是减函数



 (6)在同一坐标系中作出y=log2x和 x两个函数的图象如图3.

经过仔细研究观察发现,它们的图象关于x轴对称.



图3

(7)证明:设点P(x1,y1)是y=log2x上的任意一点,它关于x轴的对称点是P1(x1,-y1),它满足方程y==-log2x,即点P1(x1,-y1)在的图象上,反之亦然,所以y=log2x和两个函数的图象关于x轴对称.

(8)因为y=log2x和两个函数的图象关于x轴对称,所以,可以根据y=log2x的图象,利用轴对称的性质画出的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.下面我们看它们的应用.



例1 求下列函数的定义域:

(1)y=logax2;(2)y=loga(4-x).

活动:学生回忆,教师提示,师生共同完成解题过程.此题主要利用对数函数y=logax的定义域为(0,+∞)求解.①若函数解析式中含有分母,分母不能为0;②若函数解析式中含有根号,要注意偶次根号下非负;③0的0次幂没有意义;④若函数解析式中含有对数式,要注意对数的真数大于0,底数大于0而不等于1.

解:(1)由x2>0得x≠0,所以函数y=logax2的定义域是{x|x≠0};

(2)由4-x>0得x<4,所以函数y=loga(4-x)的定义域是{x|x<4}.

点评:该题主要考查对数函数y=logax的定义域为(0,+∞)这一限制条件,根据函数的解析式,列出相应不等式或不等式组,解不等式或不等式组即可.

变式训练

1.课本本节练习2.

2.求下列函数的定义域:

(1)y=log3(1-x); (2)y=;

(3)y=log7; (4)y=.

解:(1)由1-x>0得x<1,所以所求函数定义域为{x|x<1}.

(2)由log2x≠0,得x≠1,又x>0,所以所求函数定义域为{x|x>0且x≠1}.

(3)由得x<,所以所求函数定义域为{x|x<}.

(4)由得所以x≥1.

所以所求函数定义域为{x|x≥1}.



例2 溶液酸碱度的测量.

溶液酸碱度是通过pH刻画的.pH的计算公式为pH=-lg [H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.

(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;

(2)已知纯净水中氢离子的浓度为[H+]=10-7摩尔/升,计算纯净水的pH.

活动:学生审题,教师巡视,学生展示思维过程.此题主要利用对数及对数函数的性质求解.首先利用对数的运算性质把pH=-lg [H+]化为pH=lg,再利用对数函数的性质来说明.

解:(1)根据对数的运算性质,有pH=-lg [H+]=lg [H+]-1=lg.在(0,+∞)上,随着[H+]的增大,减小,相应地,lg也减小,即pH减小.所以,随着[H+]的增大,pH减小,即溶液中氢离子的浓度越大,溶液的酸度就越大.

(2)当[H+]=10-7时,pH=-lg 10-7=7,所以纯净水的pH是7.

点评:注意数学在实际问题中的应用.



课本本节练习1.



在同一坐标系中,画出函数y=log3x,,y=log2x,的图象,比一比,看它们之间有何区别与联系.

活动:教师引导学生回顾作函数图象的方法与步骤,共同讨论研究对数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,及时评价学生,学生独立思考,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对对数函数性质的认识.计算机画出如下图象(如图4).



图4

可以看到:所有图象都跨越一、四象限,任何两个图象都是交叉出现的,交叉点是(1,0);

当a>1时,图象向下与y轴的负半轴无限靠拢,在点(1,0)的右侧,函数值恒大于0,对同一自变量x而言,底数越大,函数值越小;在点(1,0)的左侧,函数值恒小于0,对同一自变量x而言,底数越大,函数值越大.

当0<a<1时,图象向上与y轴的正半轴无限靠拢,在点(1,0)的左侧,函数值恒大于0,对同一自变量x而言,底数越大,函数值越大;在点(1,0)的右侧,函数值恒小于0,对同一自变量x而言,底数越大,函数值越小.

以此为依据,可定性地分析在同一坐标系中,底数不同的若干个对数函数的底数的大小关系.

怎样定量分析同一坐标系中,底数不同的对数函数的底数的大小呢?我们知道,对于对数函数y=logax,当y=1时,x=a,而a恰好又是对数函数的底数,这就启发我们,不妨作直线y=1,它同各个图象相交,交点的横坐标恰好就是对数函数的底数,以此可比较底数的大小.

同时,根据不同图象间的关系,也可比较真数相同,底数不同的对数函数值的大小,如log23<log1.53,log20.5<log30.5,log0.52>log0.62等.

除了上述两种情况外,对于底数和真数都不同的函数值也可通过媒介值“0”或“1”去比较大小.

如log1.50.5与log0.50.3,因为log1.50.5<0,log0.50.3>0,

所以log1.50.5<log0.50.3;

又如log21.5与log0.50.4,因为log21<log21.5<log22,

所以0<log21.5<1.又因为log0.50.4>log0.50.5=1,所以log0.50.4>log21.5.



1.对数函数的概念.

2.对数函数的图象与性质.

3.函数定义域的求法及函数奇偶性的判定方法.

4.数形结合与转化的数学思想.



课本习题2.2A组 7,8,9,10.



本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,要充分利用函数图象,数形结合,无论是导入还是概念得出的过程,都比较详细,因此课堂容量大,要提高学生互动的积极性,特别是归纳出对数函数的图象和性质后,要与指数函数的图象和性质进行比较,加深对数函数的概念、图象和性质的理解,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本堂课的任务.

[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]

以上为《对数函数及其性质教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览