以下为《对数的概念教案 陈某某》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
“对数的概念”的教学设计
滦南第一中学 陈某某
一、教学内容分析
本节课是新课标高中数学A版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。同时,通过对数概念的学习,培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力。
二、学生学习情况分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思想
学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标
知识与技能:理解对数的概念,了解对数与指数的关系,掌握对数的性质,掌握对数式与指数式的互化;
过程与方法:通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学生感受到理论与实践的统一。
情感、态度与价值观:经历对数式与指数式的互化,培养学生的类比分析、归纳能力;在学习过程中培养学生的类比、分析、归纳能力,严谨的思维品质以及探究的意识。
五、教学重点与难点
重点 :(1)对数的概念;(2)对数式与指数式的相互转化。
难点 :(1)对数概念的理解;(2)对数性质的理解。
六、教学过程设计
教学环节
教学程序及设计
设计意图
创
设
情
境
引
入
新 课
引例(3分钟)
1、一尺之棰,日取其半,万世不竭。
(1)取5次,还有多长?
(2)取多少次,还有0.125尺?
分析:
(1)为同学们熟悉的指数函数的模型,易得
(2)可设取x次,则有
抽象出:
2、2002年我国GPD为a亿元,如果每年平均增
长8%,那么经过多少年GPD是2002年的2倍?
分析:设经过x年,则有
抽象出:
让学生根据题意,设未知数,列出方程。这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的兴趣,培养学生的探究意识。生活及科研中还有很多这样的例子,因此引入对数是必要的。
讲
授
新
课
讲
授
新
课
讲
授
新
课
一、对数的概念(3分钟)
一般地,如果 =N (a>0,且a≠1),那么数 b叫做 a为底 N的对数,记作,a叫做对数的底数,N叫做真数。
注意:①底数的限制:a>0且a≠1
②对数的书写格式
正确理解对数定义中底数的限制,为以后对数函数定义域的确定作准备。同时注意对数的书写,避免因书写不规范而产生的错误。
二、对数式与指数式的互化:(4分钟)
幂底数 ← a → 对数底数
指数 ← b → 对数
幂 ← N → 真数
思考:
①为什么对数的定义中要求底数a>0且a≠1?
②是否是所有的实数都有对数呢?
负数和零没有对数
让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a、b和N位置的不同,及它们的含义。互化体现了等价转化这个重要的数学思想。
三、两个重要对数(2分钟)
①常用对数:
以10为底的对数,简记为: lgN
②自然对数:
以无理数e=2.71828XXXXX为底的对数
简记为: lnN . (在科学技术中,常常使用以e为底的对数)
注意:两个重要对数的书写
这两个重要对数一定要掌握,为以后的解题以及换底公式做准备。
课堂练习(6分钟)
1 将下列指数式写成对数式:
(1) (2)
(3) (4)
2 将下列对数式写成指数式:
(1) (2)
(3)
3 求下列各式的值:
(1) (2)
本练习让学生独立阅读课本P63例1和例2后思考完成,从而熟悉对数式与指数式的相互转化,加深对对数的概念的理解。并要求学生指出对数式与指数式互化时应注意哪些问题。培养学生严谨的思维品质。
四、对数的性质(12分钟)
探究活动1
求下列各式的值:
(1) 0 (2) 0
(3) 0 (4)0
思考:你发现了什么?
“1”的对数等于零,即,类比:
探究活动由学生独立完成后,通过思考,然后分小组进行讨论,最后得出结论。通过练习与讨论的方式,让学生自己得出结论,从而更能好地理解和掌握对数的性质。培养学生类比、分析、归纳的能力。最后,将学生归纳的结论进行小结,从而得到对数的基本性质。
探究活动2
求下列各式的值:
(1) 1 (2) 1
(3) 1 (4) 1
思考:你发现了什么?
底数的对数等于“1”,即,类比:
探究活动3
求下列各式的值:
(1) 3 (2) 0.6
(3) 89
思考:你发现了什么?
对数恒等式:
探究活动4
求下列各式的值:
(1) 4 (2) 5
(3) 8
思考:你发现了什么?
对数恒等式:
负数和零没有对数
小 “1”的对数等于零,即
底数的对数等于“1”,即
结 对数恒等式:
对数恒等式:
将学生归纳的结论进行小结,从而得到对数的基本性质。
巩
固
练
习
(8分钟)
1、课本P64 练习
2、提高训练
(1)已知x满足等式,求值。
(2)求值:。
巩固指数式与对数式的互化,巩固对数的基本性质及其应用。
归
纳
小
结
强
化
思
想
(2分钟)
1、 引入对数的必要性----对数的概念
一般地,如果=N(a>0且a≠1),那么数b叫做以a为底N的对数,记作 。
2 、指数与对数的关系
3、对数的基本性质
(1)负数和零没有对数;
(2),;
(3)对数恒等式:
,
总结是一堂课内容的概括,有利于学生系统地掌握所学内容。同时,将本节内容纳入已有的知识系统中,发挥承上启下的作用。为下一课时对数的运算打下扎实的基础。
作业布置
一、课本P74 习题2.2 A组 第1、2题
二、已知,求的值
三、求下列各式的值:
作业是学生信息的反馈,教师可以在作业中发现学生在学习中存在的问题,弥补教学不足
板书设计
XXXXX2.2.1 对数的概念
引例1
引例2
一、对数的定义
二、对数式与指数式的互化
练习
三、对数的基本性质
四、小结
五、作业布置
七、教学反思
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到对数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去。
2.本课使用几何画板可以动态地演示出对数函数的底数的动态过程,让学生直观观察底数对对数函数单调性的影响。
3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。
九、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
2、 在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]
以上为《对数的概念教案 陈某某》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。