椭圆及其标准方程教学设计

本文由用户“赵欣2046”分享发布 更新时间:2022-01-09 13:09:01 举报文档

以下为《椭圆及其标准方程教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

2.2.1 椭圆及其标准方程教学设计

**_*学 王某某

一、教材内容分析

本节是整个解析几何部分的重要基础知识。这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。 二、学情分析 高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。 基于上述分析,我采取的是 “创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。使学生真正成为课堂的主体。 三、设计思想

1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性; 2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神; 3、利用《几何画板》进行动态演示,增加直观性; 四、教学目标 ?1、知识与技能目标: 理解椭圆定义、掌握标准方程及其推导。 2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。 3、情感、态度和价值观目标: (1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。 (2)进行数学美育的渗透,用哲学的观点指导学习。 五、教学的重点和难点 教学重点:椭圆定义的理解及标准方程的推导。 教学难点:标准方程的推导。 六、教学过程 (一)、创设情景,导入新课。(3分钟) 1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。 2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选,并利用微机放映几个例子的图片。 设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。通过图片、实物,吸引学生的注意力,提高参与程度,为后续学习做好准备。从而激发学生的学习积极性和参与热情。 (二)、动画演示,探索研究(15分钟) 引导学生互相配合利用细绳和铅笔动手画椭圆,通过巡视找出作图比较规范的同学用细绳和粉笔演示。再根据多媒体规范演示椭圆的形成过程。根据作图过程,让学生思考:轨迹为椭圆需满足的条件,引导学生总结椭圆定义。? 设计意图:注重概念形成过程,通过让合作交流,思考问题;让学生都积极地参与到学习中来,体现学生主体意识,开动大脑,训练思维。使知识从感性认识自然过渡到理性认识,增强了他们的集体凝聚,树立团队意识,培养学生的观察、归纳、概括能力。 定义:设问:(1)、为什么强调“平面内”? (2)、对常数有什么限制? (3)、常数的取值不同时,轨迹如何变化? 设计意图:培养学生动手实践能力,通过分组讨论提高发现问题的能力和提炼总结能力。在给出定义后,通过设问让学生加深对椭圆定义中的关键词汇的理解,进一步强化椭圆定义,真正使学生理解定义的内涵和外延。 (三)、构建方程,探索新知(10分钟) 探索方程这一部分,采用自主、合作方式,引导学生从方程思想、建系思想、等价换元等不同的角度分析归纳,并将小组讨论出的较为优秀成果展示出来,培养学生学习过程中的团队意识,也体验了数学思维的条理性和系统性。 1、根据求曲线方程的一般步骤建立椭圆方程: (1)、建系设点; (2)、列方程(3)、化简方程; (4)、等价转化; 设问:怎样选取坐标系?? 怎样化简含有两个根式的方程??? ③为什么要引入b? 2、推导得出椭圆的标准方程为:(a>b>0)? 或? (a>b>0) 设问:①两种方程有何异同?? ②怎样根据条件确定焦点的位置? 设计意图:1、通过方程的推导,学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。培养学生的发现、探究、研究能力; 2、设置问题,引导学生独立思考、使之成为知识的发现者; 3、鼓励学生富于个性化的理解和表达。 (四)、操作演练、拓展思维(5分钟) 例题: 求适合下列条件的椭圆的方程: ①、两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和等于10。 ②、两个焦点的坐标分别是(0,-4)、(0,4),椭圆上一点P到两焦点距离的和等于10。 ③、焦距为 8,椭圆上一点P到两焦点距离的和等于10。 设计意图:学以致用,运用研究成果解决问题,并通过变式训练,质疑讨论、师生互动,培养学生乐于动手、勇于实践的能力。通过变式训练来强化概念,开拓学生的思维,训练学生思维的严谨性。深化知识点的掌握,突出重点、难点 。。 练习:求适合下列条件的椭圆的标准方程: ????? (1)? 焦点坐标为(0,-4)、(0,4),a=5; ????? (2)? 焦点在x轴上,焦距等于4,并且经过点P(3,-2);? 设计意图:的让学生加深对椭圆的定义的理解,以便更好的夯实基础知识;充分渗透数形结合思想,较好的提高了学生的综合能力,从中感受数学的魅力。也为下一节课的进一步提高作了铺垫。 (五)课堂总结,完善认知(1分钟) 一个概念:椭圆: 二个方程:分焦点在X轴和Y轴两种情况 三个意识:求美意识;求简意识;猜想的意识。 四个思想:数形结合、类比、方程、转化与化归 设计意图:培养归纳、概括能力,并巩固研究成果。同时,通过小结,使学生理清这节课的重难点,深化对基本概念,基本理论的理解,同时培养学生宏观掌握知识的能力,为进一步学习打下坚实的基础。 (六)板书设计

椭圆及其标准方程 1、椭圆的定义 2、有关概念 3、标准方程 (1)焦点在X轴上 (2)焦点在Y轴上 标准方程的推导过程书写 例1:(写要点)规范关键步骤

七、教学反思

成功之处:

1、教学方法上:结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学,体现了认知心理学的基本理论。

2.学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器”,课堂上为学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。

3.学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。

4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。

5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。

不足之处:

1.本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视探究题的作用,因为班上有一部分同学基础比较扎实,而且对数学也比较感兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。

2.学生练习时间不够充分,耽误了小结时间。

3.一部分学生的计算能力还不够熟练,缺乏简化计算的能力,今后还要继续加强对学生这方面能力的培养。

总之,在课堂教学中我“以知识为载体,以思维为主线,以能力为目标,以发展为方向”,展现知识的发生形成过程。采取以学生发展为本,明确本节课的学习目标,以学习任务驱动为方式,以椭圆标准方程的求法为中心。穿插研究性教学尝试,体现了“学生是学习主体,教师是引导者、参与者、组织者、合作者”的新课程理念。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。达到了教学目标,优化了整个教学过程。但是,在教学中还是存在很多不足的,在以后的教学中还要继续努力,不断总结经验教训,提高自身的教学水平。





[全文已结束,注意以上仅为全文的文字预览,不包含图片和表格以及排版]

以上为《椭圆及其标准方程教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览